MEMORY BASED QUANTITATIVE APTITUDE QUESTIONS OF SSC CHSL TIER-I

Direction: Read the sentence to find out whether there is any error in it. The error, 1 .What is the value of $\left(\frac{1}{3}-\operatorname{Tan} 30^{\circ}\right)$?

1. $\frac{1-\sqrt{ } 3}{3}$
2. $\frac{2-\sqrt{ } 3}{3}$
3. $\frac{3-\sqrt{3}}{3}$
4. $\frac{3-\sqrt{3}}{2}$

Sol.1. $\frac{1}{3}-\frac{1}{\sqrt{3}}=$
$\frac{\sqrt{3}-3}{3 \sqrt{3}}=\frac{\sqrt{3}(1-\sqrt{3})}{3 \sqrt{3}}=\frac{1-\sqrt{3}}{3}$
2. $\triangle A B C$ is right angled at B. If $\tan A=4 / 3$, then what is the value of $\sin C$?
1.3/4 2.2/5
3.3/5
4.4/3

Sol. 3 .

$\operatorname{TanA}=\frac{B C}{A B}=\frac{4}{3}$
$\operatorname{sinC}=\frac{A B}{A C}=\frac{A B}{\sqrt{(A B)^{2}+(B C)^{2}}}$
$=\frac{3}{\sqrt{(4)^{2}+(3)^{2}}}=\frac{3}{5}$
3. What is the simplified form of (Cosec
$A+\operatorname{Sin} A)(\operatorname{Cosec} A-S i n A) ?$

1. $\operatorname{Cosec}^{2} A+\cos ^{2} A$
2. $\cot ^{2} A+\cos ^{2} A$
3. $\operatorname{Cot}^{2} A+\tan ^{2} A$
4. $\operatorname{Cot}^{2} A+\sin ^{2} A$

Sol.2. $(\operatorname{Cosec} A+\operatorname{Sin} A)(\operatorname{Cosec} A-\operatorname{Sin} A)$
$=\operatorname{Cosec}^{2} A-\operatorname{Sin}^{2} A$
$=\operatorname{Cot}^{2} A+1-\operatorname{Sin}^{2} A$
$=\cot ^{2} A+\cos ^{2} A$
4. If $\operatorname{Cosec} A+\cot A=x$, then find the value of x.

1. $\sqrt{\frac{1+\sec A}{1-\operatorname{cosec} A}}$
2. $\sqrt{\frac{1+\sin A}{1-\sin A}}$
3. $\sqrt{\frac{1+\cos A}{1-\cos A}}$
4. $\sqrt{\frac{1+\operatorname{cosec} A}{1-\sec A}}$

Sol.3. $\frac{1}{\operatorname{Sin} A}+\frac{\operatorname{Cos} A}{\operatorname{Sin} A}=$
$\frac{1+\cos A}{\operatorname{Sin} A}=\sqrt{\frac{(1+\cos A)^{2}}{\sin ^{2} A}}$
$=\sqrt{\frac{(1+\cos A)^{2}}{1-\cos ^{2} A}}=\sqrt{\frac{1+\cos A}{1-\cos A}}$
5. If $\operatorname{Sin} \theta=35 / 37$, then what is the value of $\sec \theta$?
1.12/37
2.10/35
3.37/12
4.35/37

Sol.3. $\operatorname{Sin} \theta=35 / 37$
$\operatorname{Cos} \theta=\sqrt{1-\sin ^{2}} \theta$
$\cos \theta=\sqrt{1-\frac{35^{2}}{37}}$
$\operatorname{Cos} \theta=12 / 37$
$\operatorname{Sec} \theta=37 / 12$
6. Two labourers P and Q are paid a total of Rs 1050 per day. If P is paid 150 percent of what is paid to Q, how much (in Rs) is Q paid?
1.Rs 420
2.Rs 240
3.Rs 220
4.Rs 150

Sol. Let the amount paid to $Q=x$
Then amount paid to $P=150 \%$ of x
Total amount paid to both the labour $=1050$
$x+1.5 x=650$
$2.5 x=1050$
$x=R s 420$
Then amount paid to Q is Rs 420
7. Two trains, of same length, are running in parallel tracks in the same direction with speed 50 km/hour and 100 km/hour respectively. The latter completely crosses the former in 20 seconds. The length of each train (in metres) is?
1.139 m
2.140 m
3.136 m
4.120 m

Sol.1. Length of each train $=x$ meter
Relative speed $=100-50=50 \mathrm{~km} / \mathrm{hr}$
$=50 \times 5 / 18=125 / 9 \mathrm{~m} / \mathrm{sec}$
Therefore;
$2 x / 125 / 9=20$
$=>2 x=20 \times 125 / 9$
$\Rightarrow x=138.8 \cong 139$ meter
8. A number when reduced by $\mathbf{2 0 \%}$ gives
50. The number is:
1.45.8
2.24.8
3.62 .5
4.54.7

Sol.3. $x(80 / 100)=50$
$\Rightarrow x=\frac{50 * 100}{80}=\frac{125}{2}=62.5$
9. At what point does the line $3 x+4 y=-8$ cuts the X - axis?'
1.(-2.6,0)
2. $(3,0)$
3.(-1.5,0)
4. $(2,0)$

Sol.1. Given lines $3 x+4 y=-8$
At x axis y coordinate is zero, so put $y=0$ in the given line
$3 x+4 \times 0=-8$
$X=-8 / 3=-2.6$
So coordinate is ($-2.6,0$)
10. A car travels a certain distance at 60 km / h and comes back at $40 \mathrm{~km} / \mathrm{h}$. Find the average speed for total journey.
$1.48 \mathrm{~km} / \mathrm{hr}$
2. $24 \mathrm{~km} / \mathrm{hr}$
3. $54 \mathrm{~km} / \mathrm{hr}$
4. $36 \mathrm{~km} / \mathrm{hr}$

Sol. Average speed $=\frac{2 a b}{a+b}=\frac{2 * 60 * 40}{60+40}=\frac{4800}{100}=$ $48 \mathrm{~km} / \mathrm{hr}$
11.A train moving at a rate of $54 \mathrm{~km} / \mathrm{hr}$. crosses a standing man in 20 seconds. It will cross a platform 45 metres long, in :
1.20 sec
2.22 sec
3.23 sec
4.28 sec

Sol.3. Speed of the train in $\mathrm{m} / \mathrm{s}=54 \times 5 / 18$
=>15 m/s
Time $=20 \mathrm{~s}$
Length of the train $=$ speed \times time
$=15 \times 20=300 \mathrm{~m}$
Length of the platform $=45 \mathrm{~m}$
Total distance $=$ length of the train + length of the platform
$=300 \mathrm{~m}+45 \mathrm{~m}=345 \mathrm{~m}$
Time taken to cross the platform $=$ distance/speed
=>345/15
$=>23 \mathrm{sec}$
12.Three persons whose speed is in the ratio 8:5:3 are walking. find the ratio of the time in which they reach their destination.

1. 13:22:38
2. 15:24:40
3. 11:25:40
4. 10:25:43

Sol.2. ratio of speed=8:5:3
ratio of time $=1 / 8: 1 / 5: 1 / 3=15: 24: 40$
13.A moving train passes a platform 60 m long in 20 seconds and a pole in 15 seconds. The speed of the train (in km/h) is:

1. 34 kmph
2. 23
kmph
3.43 kmph
3. 53
kmph
Sol. 3 .
Since train passes 60 m long platform in 20 sec . and pole in 15 sec .
So it takes 5 seconds to travel 60 m .
Speed $=60 / 5 \mathrm{~m} / \mathrm{s}=(60 \times 18) /(5 \times 5) \mathrm{kmph}=$ $43.2 \cong 43 \mathrm{kmph}$
4. Two trains, of same length, are running in parallel tracks in the same direction with speed $70 \mathrm{~km} / \mathrm{hour}$ and 60 km/hour respectively. The latter completely crosses the former in 20 seconds. The length of each train (in metres) is?
25m
2.28 m
3.30 m
4.35 m

Sol.2. Length of each train $=x$ meter
Relative speed $=70-60=10 \mathrm{~km} / \mathrm{hr}$
$=10 \times 5 / 18=25 / 9 \mathrm{~m} / \mathrm{sec}$
Therefore;
$2 x / 25 / 9=20$
$\Rightarrow 2 x=20 \times 25 / 9$
$\Rightarrow>x=27.7 \cong 28$ meter
Hence Option A is correct
15.If $x-\frac{1}{x}=6$ then $x^{2}+\frac{1}{x^{2}}=$?
1.38
2.39
3.42
4.48

Sol.1. $x-\frac{1}{x}=6------(i)$
On squaring both sides
$x^{2}+\frac{1}{x^{2}}-2=36$
$x^{2}+\frac{1}{x^{2}}=38$ Ans
16.If $\mathrm{x}=\sqrt{\frac{\sqrt{5+1}}{\sqrt{5}-1}}$, then value of $5 x^{2}-5 x-$

1 is?
1.2 2.3
3.4
5.5

Sol. 2. $\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}}=\sqrt{\frac{(\sqrt{5}+1)^{2}}{(\sqrt{5})^{2}-1^{2}}}=\frac{\sqrt{5}+1}{2}$
$5 x^{2}-5 x-1$
$5\left[\frac{(\sqrt{5}+1)}{2}\right]^{2}-5 \frac{(\sqrt{5}+1)}{2}-1$
$5\left(\frac{5+1+2 \sqrt{5}}{4}\right)-\frac{5 \sqrt{5}+5}{2}-1$
$5\left(\frac{3+\sqrt{3}}{2}\right)-\frac{5 \sqrt{5}+5}{2}-1=$
$\frac{15+5 \sqrt{5}-5 \sqrt{5}-5-2}{2}=\frac{8}{2}=4$
17.If $x+y=10$ and $x^{2}+y^{2}=88$, then $x y$
is:
$1.15 \quad 2.13$
$3.6 \quad 4.20$
Sol.3. $(x+y)^{2}=x^{2}+y^{2}+2 x y$
$\Rightarrow(10)^{2}=88+2 x y$
$\Rightarrow x y=6$
18. Which of the following is not a quadratic equation?
$1.2 x(x+3)=3 x(4 x+4)$
$2.4 x(x+2)=2 x(x+4)$
$3.6 x(x+4)=5 x(x+5)$
4.7x $(x+4)=7 x(x+5)$

Sol. 4.
$7 x(x+4)=7 x(x+5)$ is not a quadratic equation as the coefficient of x^{2} is zero.
19.If
$\frac{3\left(\frac{3 x}{5}-\frac{2}{4}\right)}{4}-\frac{3}{4}=-\frac{1}{5}$ then the value of x is?

$\begin{array}{ccc}$| 4 | 4 |
| ---: | :--- |
| 1.47 | 5 |
| 18 | |
| 17 | | \& $2 \cdot \frac{37}{18}\end{array}$

3. $\frac{17}{18} \quad 4.2$

Sol.2. $\frac{3\left(\frac{3 x}{5}-\frac{2}{4}\right)}{4}-\frac{3}{4}=-\frac{1}{5}$
$\frac{\frac{9 x}{5}-\frac{6}{4}}{4}-\frac{3}{4}=-\frac{1}{5}$
$\frac{\frac{36 x-30}{20}}{4}-\frac{3}{4}=-\frac{1}{5}$
$\frac{36 x-30}{80}-\frac{3}{4}=-\frac{1}{5}$
$36 x-90=-16$
$x=\frac{37}{18}$
20. $\frac{\sin 60^{\circ} \cos 30^{\circ}}{\tan 30}$ is euqal to?

$1.1 / 4$	$2.3 / 4$
$3.4 / 5$	$4.3 / 5$

Sol.2. $\frac{\sin 60^{\circ} \cos 30^{\circ}}{\tan 30}=$

$$
=\frac{\frac{\sqrt{3}}{2} \times \frac{1}{2}}{\frac{1}{\sqrt{3}}}=\frac{\frac{\sqrt{3}}{4}}{\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}}{4} \times \frac{\sqrt{3}}{1}=\frac{3}{4}
$$

