Quadratic Equation

$a x^{2}+b x+c=0$
$a=$ coefficient of x^{2}
$b=$ coefficient of x
c = constant term
There are 5 Questions asked from this topic. Two equations given and we have to find the values and the relationship between these equations. Relationship can be:
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation

Example 1:

$x^{2}-5 x+6=0$
$y^{2}-8 Y+16=0$
Step1: let us take equation 1. $x^{2}-5 X+6=0$
In this equation, coefficient of $x, 5$ should be split into two numbers in such a way that multiplication of both numbers should be equal to constant term 6 and addition of numbers should be equal to 5 .
It can be split into ($1+4$ and $2+3$)
In the combination of 2 and 3 can achieve the product 6 . Coefficient of x^{2} is 1 and negative sign with $5 x$, we have to change the sign for both factors from negative to positive.
$x=+2$ and +3

Step 2: Now equation $2 . y^{2}-8 y+16=0$
Similar process applicable for this equation to find y, here coefficient of y should be split into two numbers and multiplication of the numbers should give 16.
8 can be split up into $(1,7)(2,6)(3,5)(4,4)$
Combination of 4 and 4 alone satisfy the condition i.e. giving 8 while adding and giving 16 while multiplying the numbers, since there is no negative sign in the equation, we can directly write value of y by changing sign.
$y=+4,+4$
Now, compare the value of x with the values of y.
First, $x 1=+2<y 1=+4$

Second, $x 1=+2<y 2=+4$
Third, $x 2=+3<y 1=+4$
Fourth, $x 2=+3<y 2=+4$
Hence, we can say that $x<y$.

Example 2:

I. $x^{2}-x-6=0$
II. $2 y^{2}+13 y+21=0$

Sol: I. $x^{2}-x-6=0$
Factors are (+2 and -3)
No coefficient with x^{2}, just reverse the sign.
Now, x1 = -2
$x 2=+3$
II. $2 y^{2}+13 y+21=0$

Same process as above,
Factors are (+6 and +7)
Divided by Coefficient of x^{2} which is 2
Now, Change the signs and divide the both numbers by 2.
$y 1=-6 / 2=-3$
y2 $=-7 / 2=-3.5$
Compare values of x and y
$x 1>y 1$
$x 2>y 2$
$x 1>y 1$
$x 2>y 2$
No opposite sign there. Hence, $x>y$

Example 3:

I. $x^{2}-5 x+4=0$
II. $y^{2}+11 y+30=0$

Sol:

I. $x^{2}-5 x+4=0$

Values of $x=+4,+1$
II. $y^{2}+11 y+30=0$

Values of $y=-5,-6$
We can clearly say that $x>y$.

Practice Questions

1. I. $2 x^{2}+21 x+34=0$
II. $3 y^{2}+23 y+42=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
2. I. $x^{2}-15 x-364=0$
II. $y^{2}+31 y+240=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
3. 4. $x^{2}-3481=0$
II. $y^{2}-118 y+3481=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
1. I. $2 x^{2}+11 x+15=0$
-II. $4 y^{2}+16 y+15=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
2. I. $x^{3}-9 x^{2}+20 x=0$
II. $y^{3}-14 y^{2}+48 y=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
3. $2 x^{2}+x-21=0$
$3 y^{2}+4 y+32=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
4. $x^{2}-6 x+135=0$
$y^{2}-30 y+225=0$
(A) $x>y$
(B) $x<y$
(C) $x \leq y$
(D) $x \geq y$
(E) $x=y$ or no relation
5. $\frac{25}{\sqrt{x}}-4 \sqrt{x}=\sqrt{x}$
$2 y+\frac{y^{2}+50}{y}=5 y$
(A) $x>y$
(B) $x<y$
(C) $x \leq y$
(D) $x \geq y$
(E) $x=y$ or no relation
6. $x^{2}-43 x+462=0$
$y^{2}-37 y+342=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
7. $\sqrt{x}+\frac{28}{\sqrt{x}}=5 \sqrt{x}$ $\sqrt{y}+\frac{y+35}{\sqrt{y}}=7 \sqrt{y}$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
8. $4 x^{2}-25 x+25=0$
$2 y^{2}-13 y+21=0$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation
9. $2 x^{2}-6 x-48=0$
$y^{2}-13 y+42=0$
(A) $x>y$
(B) $x<y$
(C) $x \leq y$
(D) $x \geq y$
(E) $x=y$ or no relation
10. I. $6 x^{2}-19 x-36=0$
II. $4 y^{2}-47 y+120=0$
(A) $x>y$
(B) $x<y$
(C) $x \leq y$
(D) $x \geq y$
(E) $x=y$ or no relation
11. $4 \mathrm{x}^{4}=\frac{128}{x}$
$\sqrt{y}+\frac{15 y}{\sqrt{y}}=4 y^{\frac{5}{2}}$
(A) $x>y$
(B) $x<y$
(C) $x \geq y$
(D) $x \leq y$
(E) $x=y$ or no relation

Solutions

1. Answer is option E Explanation:
I. $2 x^{2}+21 x+34=0$
$2 x^{2}+17 x+4 x+34=0$
$x=-\frac{17}{2}=-8.5,-\frac{4}{2}=-2$
II. $3 y^{2}+23 y+42=0$
$3 y^{2}+14 y+9 y+42=0$
$y=-\frac{14}{3}=-4.66,-\frac{9}{3}=-3$
Hence, no relation.

2. Answer is option A

Explanation:

I. $x^{2}-15 x-364=0$
$x^{2}-28 x+13 x-364=0$
$x=+28,-13$
II. $y^{2}+31 y+240=0$
$y^{2}+15 y+16 y+240=0$
$y=-15,-16$
Hence, $x>y$
3. Answer is option D Explanation:
I. $x^{2}-3481=0$
$x^{2}=3481$
$x= \pm 59$
II. $y^{2}-118 y+3481=0$
$y^{2}-59 y-59 y+3481=0$
$y=+59,+59$
Hence, $x \leq y$

4. Answer is option D

Explanation:
I. $2 x^{2}+11 x+15=0$
$2 x^{2}+6 x+5 x+15=0$
$x=-\frac{6}{2}=-3,-\frac{5}{2}=-2.5$
II. $4 y^{2}+16 y+15=0$
$4 y^{2}+10 y+6 y+15=0$
$y=-\frac{10}{4}=-2.5,-\frac{6}{4}=-1.5$
Hence, $x \leq y$

5. Answer is option E Explanation:

I. $x^{3}-9 x^{2}+20 x=0$
$x\left(x^{2}-9 x+20\right)=0$
$x^{2}-9 x+20=0$
$x^{2}-4 x-5 x+20=0$
$x=4,5$ and 0
II. $y^{3}-14 y^{2}+48 y=0$
$y\left(y^{2}-14 y+48\right)=0$
$y^{2}-14 y+48=0$
$y^{2}-6 y-8 y+48=0$
$y=6,8$ and 0
Hence, no relation

6. Answer is option E

Explanation:
$2 x^{2}+x-21=0$
$2 x^{2}+7 x-6 x-21=0$
$x=\frac{7}{2}=-3.5,+\frac{6}{2}=+3$
$3 y^{2}+4 y+32=0$
$3 y^{2}+12 y-8 y+32=0$
$y=-\frac{12}{3}=-4,+\frac{8}{3}=+2.66$
Hence, no relation.
7. Answer is option C

Explanation:
$x^{2}-6 x+135=0$
$x^{2}-15 x+9 x+135=0$
$x=+15,-9$
$y^{2}-30 y+225=0$
$y^{2}-15 y-15 y+225=0$
$y=+15,+15$
Hence, $x \leq y$

8. Answer is option D

Explanation:
$\frac{25}{\sqrt{x}}-4 \sqrt{x}=\sqrt{x}$
$25-4 \mathrm{x}=\mathrm{x}$
$25=5 x$
$X=5$
$2 \mathrm{y}+\frac{\mathrm{y} 2+50}{y}=5 \mathrm{y}$
$2 y^{2}+y^{2}+50=5 y^{2}$
$2 \mathrm{y}^{2}=50$
$y=\sqrt{25}$
$y= \pm 5$
Hence, $x \geq y$

9. Answer is option A

Explanation:
$x^{2}-43 x+462=0$
$x^{2}-22 x-21 x+462=0$
$x=+22$, +21
$y^{2}-37 y+342=0$
$y^{2}-19 y-18 y+342=0$
$y=+19,+18$
Hence, $x>y$
10. Answer is option E

Explanation:
$\sqrt{x}+\frac{28}{\sqrt{x}}=5 \sqrt{x}$
$\sqrt{x}+\frac{28}{\sqrt{x}}=5 \sqrt{x}$
$\mathrm{X}+28=5 \mathrm{x}$
$28=4 x$
$\mathrm{X}=7$
$\sqrt{y}+\frac{y+35}{\sqrt{y}}=7 \sqrt{y}$
$\mathrm{y}+\mathrm{y}+35=7 \mathrm{y}$
$35=5 y$
$y=7$
$x=y$
11. Answer is option E

Explanation:
$4 x^{2}-25 x+25=0$
$4 x^{2}-20 x-5 x+25=0$
$x=\frac{20}{4}=5, x=\frac{5}{4}=1.25$
$2 y^{2}-13 y+21=0$
$2 y^{2}-7 y-6 y+21=0$
$y=\frac{7}{2}=3.5, y=\frac{6}{2}=3$
Hence, there is no relation.
12. Answer is option C

Explanation:
$2 x^{2}-4 \mathrm{x}-48=0$
$2\left(x^{2}-2 x-24\right)=0$
$x^{2}-2 x-24=0$
$x^{2}-6 x+4 x-24=0$
$x=+6,-4$
$y^{2}-13 y+42=0$
$y^{2}-7 y-6 y+42=0$
$y=+7,+6$
Hence, $x \leq y$.
13. Answer is option E

Explanation:
I. $6 x^{2}-19 x-36=0$
$6 x^{2}-27 x+8 x-36=0$
$x=+\frac{27}{6}=+4.5$
$x=-\frac{8}{6}=-1.33$
II. $4 y^{2}-47 y+120=0$
$4 y^{2}-32 y-15 y+120=0$
$y=+\frac{32}{4}=+8$
$y=+\frac{15}{4}=+3.75$
No relation
14. Answer is option C

Explanation:
$\sqrt{y}+\frac{15 y}{\sqrt{y}}=4 y^{\frac{5}{2}}$
$y+15 y=4 y 3$
$y(1+15)=4 y 3$
$16=4 \mathrm{y} 2$
$4=\mathrm{y} 2$
$y= \pm 2$
$4 x^{4}=\frac{128}{x}$
$4 x^{5}=128$
$x^{5}=32$
$x^{5}=2^{5}$
$x=2$
Hence, $x \geq y$

